1 Rational design of functional binder systems for high-energy lithium-based rechargeable batteries. Energy Storage Materials, 35, 353-377, doi:10.1016/j.ensm.2020.11.021 (2021).
2 Li4Ti5O12 spinel anode: Fundamentals and advances in rechargeable batteries. InfoMat, doi:10.1002/inf2.12228 (2021).
3 Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 36, 147-170, doi:10.1016/j.ensm.2020.12.027 (2021).
4 Benzophenone as indicator detecting lithium metal inside solid state electrolyte. Journal of Power Sources, 492, 229661, doi:10.1016/j.jpowsour.2021.229661 (2021).
5 Promises and Challenges of the Practical Implementation of Prelithiation in Lithium‐Ion Batteries. Advanced Energy Materials, doi:10.1002/aenm.202101565 (2021).
6 Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter, doi:10.1016/j.matt.2021.08.009 (2021).
7 Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 37, 77-86, doi:10.1016/j.ensm.2021.02.001 (2021).
8 In-Built Ultraconformal Interphases Enable High-Safety Practical Lithium Batteries. Energy Storage Materials, 43, 248-257, doi:10.1016/j.ensm.2021.09.007 (2021).
9 Addressing the Low Solubility of a Solid Electrolyte Interphase Stabilizer in an Electrolyte by Composite Battery Anode Design. Acs Applied Materials & Interfaces, 13, 13354-13361, doi:10.1021/acsami.1c01571 (2021).
10 Nonflammable Pseudoconcentrated Electrolytes for Batteries. Current Opinion in Electrochemistry, 30, doi:10.1016/j.coelec.2021.100783 (2021).
11 Correlation between thermal stabilities of nickel‐rich cathode materials and battery thermal runaway. International Journal of Energy Research, doi:10.1002/er.7143 (2021).
12 From separator to membrane: separators can function more in lithium ion batteries. Electrochemistry Communications, 124, doi:10.1016/j.elecom.2021.106948 (2021).
13 Impact of lithium‐ion coordination on lithium electrodeposition. Energy & Environmental Materials, doi:10.1002/eem2.12266 (2021).
14 A practical approach to predict volume deformation of lithium ion batteries from crystal structure changes of electrode materials. International Journal of Energy Research, doi:1002/ER.6355 (2021).
15 Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition.
Energy Storage Materials,
34, 563-573, doi:
https://doi.org/10.1016/j.ensm.2020.10.020 (2021).
16 Anodic Stabilities of Various Metals as the Current Collector in High Concentration Electrolytes for Lithium Batteries. Journal of the Electrochemical Society, 168, doi:10.1149/1945-7111/abe8ba (2021).
17 Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 6, 1839–1848, doi:10.1021/acsenergylett.1c00365 (2021).
18 In situ observation of thermal-driven degradation and safety concerns of lithiated graphite anode. Nature Communications, 12, 4235, doi:10.1038/s41467-021-24404-1 (2021).
19 Internal short circuit evaluation and corresponding failure mode analysis for lithium-ion batteries. Journal of Energy Chemistry, 61, 269-280, doi:10.1016/j.jechem.2021.03.025 (2021).
20 Three-Dimensional Covalent Organic Framework with ceq Topology. Journal of the American Chemical Society, 143, 92-96, doi:10.1021/jacs.0c11313 (2021).
21 Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano Energy, 85, doi:10.1016/j.nanoen.2021.105878 (2021).
22 Thermal-Responsive, Super-Strong, Ultrathin Firewalls for Quenching Thermal Runaway in High-Energy Battery Modules. Energy Storage Materials, 40, 329-336, doi:10.1016/j.ensm.2021.05.018 (2021).
23 Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials, 35, 310-316, doi:10.1016/j.ensm.2020.11.015 (2021).
24 Phosphorus-doped lithium- and manganese-rich layered oxide cathode material for fast charging lithium-ion batteries. Journal of Energy Chemistry, 62, 538-545, doi:10.1016/j.jechem.2021.04.026 (2021).
25 Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 39, 395-402, doi:10.1016/j.ensm.2021.04.035 (2021).
26 A Salt‐in‐Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling. Advanced Functional Materials, 31, doi:10.1002/adfm.202010602 (2021).
27 Unexpected electocatalytic activity of a micron-sized carbon sphere-graphene (MS-GR) supported palladium composite catalyst for ethanol oxidation reaction (EOR). Materials Chemistry and Physics, 259, doi:10.1016/j.matchemphys.2020.124035 (2021).
28 Unexpected facilitation of the pyrolysis products of potassium ferrocyanide to the electrocatalytic activity of a PdO based palladium iron composite catalyst towards ethanol oxidation reaction (EOR). International Journal of Hydrogen Energy, 46, 633-644, doi:10.1016/j.ijhydene.2020.10.009 (2021).
29 Electrochemical deposition of leaf stalk-shaped polyaniline doped with sodium dodecyl sulfate on aluminum and its use as a novel type of current collector in lithium ion batteries. Synthetic Metals, 278, doi:10.1016/j.synthmet.2021.116837 (2021).
30 A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83-99, doi:10.1016/j.jechem.2020.10.017 (2021).
31 In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode. Science China Chemistry, 64, 1417-1425, doi:10.1007/s11426-021-1023-4 (2021).
32 Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model. Applied Energy, 295, doi:10.1016/j.apenergy.2021.117038 (2021).
33 A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm(-2) and 20 mAh cm(-2). Journal of the American Chemical Society, 143, 3143-3152, doi:10.1021/jacs.0c11753 (2021).
34 The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials, 33, 360-381, doi:10.1016/j.ensm.2020.08.028 (2020).
35 Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. Science Advances, 6, doi:10.1126/sciadv.aay8606 (2020).
36 K0.83V2O5: A New Layered Compound as a Stable Cathode Material for Potassium-Ion Batteries. ACS Appl Mater Interfaces, 12, 9332-9340, doi:10.1021/acsami.9b22087 (2020).
37 A magnetic solder for assembling bulk covalent adaptable network blocks. Chemical Science, 11, 7694-7700, doi:10.1039/d0sc01678k (2020).
38 A Facile Approach to High Precision Detection of Cell-to-Cell Variation for Li-ion Batteries. Scientific Reports, 10, 7182, doi:10.1038/s41598-020-64174-2 (2020).
39 Liquid-Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie-International Edition, 59, 4778-4784, doi:10.1002/anie.201915694 (2020).
40 An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 5, 807-816, doi:10.1021/acsenergylett.0c00211 (2020).
41 A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes. Nano Research, 13, 1383-1388, doi:10.1007/s12274-020-2645-8 (2020).
42 Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes. Acs Applied Materials & Interfaces, 12, 14315-14322, doi:10.1021/acsami.9b21949 (2020).
44 Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 11, 829, doi:10.1038/s41467-020-14550-3 (2020).
45 Thickness variation of lithium metal anode with cycling. Journal of Power Sources, 476, doi:10.1016/j.jpowsour.2020.228749 (2020).
46 Accelerated Lithium-ion Conduction in Covalent Organic Frameworks. Chemical Communications, 56, 10465 - 10468, doi:10.1039/D0CC04324A (2020).
47 Countersolvent Electrolytes for Lithium-Metal Batteries. Advanced Energy Materials, 10, doi:10.1002/aenm.201903568 (2020).
48 Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research, 13, 1122-1126, doi:10.1007/s12274-020-2756-2 (2020).
49 Conformal Prelithiation Nanoshell on LiCoO2 Enabling High-Energy Lithium-Ion Batteries. Nano Letters, 20, 4558-4565, doi:10.1021/acs.nanolett.0c01413 (2020).
50 Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Appl Mater Interfaces, 12, 57055-57063, doi:10.1021/acsami.0c16865 (2020).
51 Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries. Applied Energy, 259, 13, doi:10.1016/j.apenergy.2019.114143 (2020).
52 Toward a High-Voltage Fast-Charging Pouch Cell with TiO2 Cathode Coating and Enhanced Battery Safety. Nano Energy, 71, doi:10.1016/j.nanoen.2020.104643 (2020).
53 Large-scale synthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. SCIENCE CHINA Materials, 63, 1683-1692, doi:10.1007/s40843-020-1327-8 (2020).
54 Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes. Nature Communications, 11, 5100, doi:10.1038/s41467-020-18868-w (2020).
55 PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Applied Energy Materials, 3, 7191-7199, doi:10.1021/acsaem.0c01232 (2020).
56 A Lithium Metal Anode Surviving Battery Cycling Above 200 degrees C. Advanced Materials, 32, e2000952, doi:10.1002/adma.202000952 (2020).
57 Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule, 4, 743-770, doi:10.1016/j.joule.2020.02.010 (2020).
58 Preparation of CuBr nanoparticles on the surface of the commercial copper foil via a soaking method at room temperature: Its unexpected facilitation to the discharge capacity of the commercial graphite electrode. Journal of Electroanalytical Chemistry, 877, doi:10.1016/j.jelechem.2020.114626 (2020).
59 An ionic liquid-present hydrothermal method for preparing hawthorn sherry ball shaped palladium (Pd)-based composite catalysts for ethanol oxidation reaction (EOR). International Journal of Hydrogen Energy, 45, 1930-1939, doi:10.1016/j.ijhydene.2019.11.110 (2020).
60 Detecting topology freezing transition temperature of vitrimers by AIE luminogens. Nature Communications, 10, doi:10.1038/s41467-019-11144-6 (2019).
61 Reprocessable Thermoset Soft Actuators. Angewandte Chemie-International Edition, 58, 17474-17479, doi:10.1002/anie.201911612 (2019).
62 An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 29, doi:10.1002/adfm.201805978 (2019).
63 New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters, 4, 656-665, doi:10.1021/acsenergylett.9b00032 (2019).
64 A highly soluble, crystalline covalent organic framework compatible with device implementation. Chemical Science, 10, 1023-1028, doi:10.1039/c8sc04255a (2019).
65 Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries. Journal of Power Sources, 430, 60-66, doi:10.1016/j.jpowsour.2019.04.086 (2019).
66 Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule, 3, 1080-1093, doi:10.1016/j.joule.2019.01.017 (2019).
67 Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Applied Energy, 250, 323-332, doi:10.1016/j.apenergy.2019.05.015 (2019).
68 Corrosion resistance mechanism of chromate conversion coated aluminium current collector in lithium-ion batteries. Corrosion Science, 158, 108100, doi:10.1016/j.corsci.2019.108100 (2019).
69 Conformal Hollow Carbon Sphere Coated on Sn4P3 Microspheres as High-Rate and Cycle-Stable Anode Materials with Superior Sodium Storage Capability. ACS Applied Energy Materials, 2, 1756-1764, doi:10.1021/acsaem.8b01885 (2019).
70 Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries. Electrochimica Acta, 310, 230-239, doi:10.1016/j.electacta.2019.04.124 (2019).
71 Three-Dimensional Printing of Hierarchical Porous Architectures. Chemistry of Materials, 31, 10017-10022, doi:10.1021/acs.chemmater.9b02761 (2019).
72 Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries. Journal of Power Sources, 378, 527-536, doi:10.1016/j.jpowsour.2017.12.050 (2018).
73 Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nature Communications, 9, doi:10.1038/s41467-018-04257-x (2018).
74 Metal-Organic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning. Chemistry of Materials, 30, 4124-4133, doi:10.1021/acs.chemmater.8b01573 (2018).
75 An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 29, doi:10.1002/adfm.201805978 (2018).
76 Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots. Advanced Materials, 30, doi:10.1002/adma.201801103 (2018).
77 Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule, 2, 2047-2064, doi:10.1016/j.joule.2018.06.015 (2018).
78 Designed synthesis of stable light-emitting two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Nature Communications, 9, doi:10.1038/s41467-018-06719-8 (2018).
79 Protecting Al foils for high-voltage lithium-ion chemistries. Materials Today Energy, 7, 18-26, doi:10.1016/j.mtener.2017.12.001 (2018).
80 Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267, doi:10.1016/j.ensm.2017.05.013 (2018).
81 A durable monolithic polymer foam for efficient solar steam generation. Chemical Science, 9, 623-628, doi:10.1039/c7sc02967e (2018).